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We present a computationally efficient, adaptive solver for the solution of the Poisson and
Helmholtz equation used in flow simulations in domains with combinations of unbounded
and periodic directions. The method relies on using FFTs on an extended domain and it is
based on the method proposed by Hockney and Eastwood for plasma simulations. The
method is well-suited to problems with dynamically growing domains and in particular
flow simulations using vortex particle methods. The efficiency of the method is demon-
strated in simulations of trailing vortices.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Simulations of flows such as jets and wakes require an unbounded computational domain. Periodic domains are however
usually employed to take advantage of available FFT-based elliptic solvers for the solution of the associated Poisson equation.
It has been demonstrated [8] that the use of periodic or unbounded domains can affect the dynamics of the flow. The
straightforward approach of employing large periodic boxes to alleviate the effects of the periodic images, requires in turn
large numbers of computational elements that almost void the benefits of using fast elliptic solvers.

Hybrid techniques have been developed that balance the requirement for computational efficiency with the geometric
requirements of the flow, by combining domains that are unbounded in one or two dimensions while maintaining period-
icity in the other dimensions. In [9] a cartesian and a cylindrical mesh are coupled and the method relies on an analytical
representation of the velocity field in order to match solutions in the periodic and the unbounded parts of the domain.
The method is well-suited for simulations of vortical flows such as aircraft wakes. In [11] unbounded–periodic simulations
are performed using vortex methods using images of the vorticity field to account for periodicity, thus allowing for a seam-
less integration of the periodic and unbounded domains in a Fast Multipole summation algorithm. A set of successively coar-
ser grids is implemented in [3] to solve the Poisson equation with Dirichlet boundary conditions in each grid thus emulating
zero far-field conditions for bluff body flows.

The use of periodic domains in lieu of nominally unbounded domains for the solution of elliptic problems is not unique to
fluid mechanics. Hockney and Eastwood [5], hereafter referred to as HE, have proposed more than 30 years ago a method
that operates on the wave space to perform the convolutions necessary for solving the Poisson equation in unbounded
domains. In this paper, we extend this method and combine it with adaptive particle methods so as to simulate flows in
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periodic–unbounded domains. The method relies on FFTs in all directions for the solution of the elliptic problem at the cost
of doubling the domain size in the non-periodic directions. The use of FFTs enables the straightforward implementation of
this technique with existing Fourier-based Poisson solvers.

This paper is organized as follows. Section 2 presents the elliptic solver for unbounded and mixed periodic–unbounded
geometries, the vortex particle method and its implementation. In Section 3, we apply this approach to vortical instabilities
2. Methodology

The focus of this work is the solution of the Poisson equation for flow simulations in remeshed vortex methods [6]. We
introduce however the methodology using the Helmholtz equation as it readily reduces to the Poisson equation and as it is
the governing equation in cases where the elliptic problem is solved with one or two periodic directions. The Helmholtz
equation reads
Duþ k2u ¼ �f ð1Þ
in an unbounded domain Rd ðd ¼ 2;3Þ, or a domain with one or two periodic directions Rd=Zd0 ðd0 ¼ 1;2Þ.
The solution of this equation can be expressed as a convolution ðuðxÞ ¼ GkHf ðxÞÞ with the fundamental solution of the

equation Gk. For unbounded domains in two and three dimensions, these functions are given by
G2D
k ðxÞ ¼

i
4

Hð1Þ0 ðkjxjÞ; G3D
k ðxÞ ¼

eikjxj

4pjxj ð2Þ
where Hð1Þ0 is the Hankel function of the first kind. The convolution can be carried out in real space by means of fast sum-
mation algorithms such as Fast Multipole Methods [4,2]. FMM respect the unbounded domain but their computational
implementation lags well behind the implementation of FFTs. In turn FFTs imply a periodic domain but as has been proposed
in [5], a simple extension of the domain can emulate an unbounded domain albeit at doubling the cost of the solver for each
unbounded direction.
2.1. A Fourier solver for unbounded domains

The algorithm proposed by HE for solving the Poisson equation in unbounded domains using FFTs involves two steps

(1) Double the original domain of definition of the right-hand side f and pad the extension with zeros. The zero padding
eliminates the effects of the periodic images.

(2) Solve the Helmholtz equation in wave space (for the extended domain): ûðkÞ ¼ bGkðkÞf̂ ðkÞ. The upper halves of the
result of the inverse transforms are discarded.

The transform of the fundamental solution bGk only has to be computed once and stored. In three dimensions, the funda-
mental solution Gk is initialized on the extended domain ð2NX � 2Ny � 2NzÞ, the extension being even images of Gk
Gi;j;k ¼

G3DðiDx; jDy; kDzÞ if i 6 Nx; j 6 Ny; k 6 Nz

G3Dðð2Nx � iÞDx; jDy; kDzÞ if i > Nx; j 6 Ny; k 6 Nz

G3DðiDx; ð2Ny � jÞDy; kDzÞ if i 6 Nx; j 6 Ny; k 6 Nz

. . .

8>>>><
>>>>:

ð3Þ
The singularity at (0,0,0) is integrable and is replaced with its average contribution in a cell volume. A simple analytical
expression is obtained by substituting a spherical volume equivalent to the cubic cell
G0;0;0 ¼
Z Dx=2

�Dx=2

Z Dy=2

�Dy=2

Z Dz=2

�Dz=2
G3Dðx; y; zÞdxdydz ð4Þ

’
Z p

0

Z p

�p

Z req

0

eikr

4pr
sinðwÞr2 dr dhdw ’ ð1� ikreqÞeikreq � 1

k2 ð5Þ
where req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3DxDyDz

4p
3
q

. In the case k ¼ 0, the above expression reduces to r2
eq=2. The initialization is completed by the forward

transform of Gi;j;k and its storage.
2.2. A periodic–unbounded solver

We extend the algorithm of HE to the case of mixed periodic–unbounded conditions. This requires the additional step of
splitting the Laplacian operator according to the periodic and unbounded directions. In three dimensions with periodicity in
the z-direction we write
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Dxyuþ @
2u
@z2 þ k2u ¼ �f ð6Þ
A Fourier transform in the periodic direction yields
Dxy~uþ k2 � k2
z

� �
~u ¼ �~f ð7Þ
where we define ~uðx; y; kzÞ as the z-transformed field.
For a given kz, this is a two-dimensional unbounded Helmholtz equation. The approach discussed in Section 2.1 for two

unbounded directions thus applies. For every constant-kz plane, the fundamental solution of Eq. (7) is
G2Dffiffiffiffiffiffiffiffiffi
k2�k2

z

p ðx; yÞ ¼ i
4

Hð1Þ0 k2 � k2
z

� �1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
ð8Þ
Because we focus on a fluid simulation application, we detail the case of the Poisson equation ðk ¼ 0Þ. The expression above
then involves an imaginary parameter for all kz > 0 and becomes
G2D
ijkz jðx; yÞ ¼

1
2p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
if kz ¼ 0

1
2p K0ðjkzjð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ÞÞ otherwise

8<
: ð9Þ
This expression is singular at ðx; yÞ ¼ ð0;0Þ. We regularize it with the average cell value, which yields
G2D
i¼0;j¼0;kz

¼

2 ln 1þ
ffiffi
2
pð Þ

p3=2r2D
eq

if kz ¼ 0

1�kzr2D
eq K1 kzr2D

eqð Þ
p kzr2D

eqð Þ2
otherwise

8>><
>>: ð10Þ
The initialization and solution steps are then similar to the all-unbounded case. We note that the extension to the general
case k – 0 is immediate.

Let us mention finally the cases of two dimensions with one periodic direction (y) and three dimensions with two periodic
directions (y and z). They can be treated in a similar fashion and involve the fundamental solution of the Helmholtz equation
in one dimension
G1D ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

y ð�k2
z Þ

p ðxÞ ¼ i ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

y ð�k2
z Þ

p
x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

yð�k2
z Þ

q ð11Þ
2.3. Vortex particle method

We consider a three-dimensional incompressible flow and the Navier–Stokes equations in their velocity (u)-vorticity
ðx ¼ r� uÞ form
Dx

Dt
¼ ðx � rÞuþ mr2

x ð12Þ

r � u ¼ 0 ð13Þ
where D
Dt ¼ @

@t þ u � r denotes the Lagrangian derivative and m is the kinematic viscosity. The velocity field is the solution of
the Poisson equation
r2u ¼ �r� x ð14Þ
The vorticity field is discretized by particles, characterized by a position xp, a volume Vp and a strength ap ¼
R

Vp
xdx. Particles

are convected by the flow field and their strengths are modified according to Eq. (12). We use a hybrid method where the
velocity field and the right-hand side differential operators are first computed on the mesh through the use of Fast Poisson
solvers and Finite Differences. The results of these calculations on the grid are then interpolated back onto the particles. We
refer to [1] for an extensive description of the method and its implementation for large parallel architectures.

2.4. Discussion

The implementation of our extension to the HE technique is immediate for an existing FFT-based solver. The only addi-
tional precautions concern the padding of the domain and the preliminary computation of the transformed Green’s function.

The costs incurred in this technique are twofold. Storage will have to accommodate the precomputed Green’s function
and a wavespace field which has doubled in size for each unbounded direction. We note that this overhead can be alleviated
through straightforward optimizations: the symmetries of the Green’s function can be exploited and by choosing an
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unbounded direction for the innermost transform, one can combine the forward transform, the product and the inverse
transform.

The computational overhead will depend on the aspect ratio of the geometry, i.e. the unbounded dimensions with respect
to the periodic ones; for two unbounded directions and a cubic geometry, the overhead factor will be of approximately 2.5.

Finally, the present approach allows the computational domain to grow or shrink according to the support of the right-
hand side of the PDE, a step which is facilitated by our use of a particle method. A threshold is necessary to make this growth
practicable: vorticity below this threshold is allowed to exit the domain but vorticity above that threshold in the neighbor-
hood of boundaries triggers a domain growth. Conversely, the absence of significant vorticity near the computational bound-
aries allows us to shrink the domain.

This truncation technique entails an approximation as it corresponds to a vorticity sink term in a modified vorticity trans-
port equation. The intensity of this sink term and the distance between its support and the physics of interest are controlled
by the threshold value. We underline two consequences. This term is not necessarily divergence-free, thus potentially gen-
erating vorticity withr � x – 0. Over time, this approach can also lead to large computational domains, in particular if slowly
decaying structures advect to large distances. This happens, to a limited extent, in the examples of Section 3 where the initial
problem size is small enough to use a restrictive, i.e. small, threshold. We mention two possible solutions that would rely on
coarsening of the grid

(1) over time: the mesh resolution can be uniformly decreased for problems which are developing spatially but decaying
over time;
Fig. 1. Counter-rotating vortex pairs: isosurfaces of vorticity norm, from opaque red to transparent blue, jxj ¼ 1=2;1=4;1=8;1=16;1=32;1=64jxjt¼0
max and

computational domain. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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(2) in space: the present approach does not preclude the use of embedded coarser grids (as in [3]) in order to alleviate the
truncation issue. In fact the combination of the present method with the embedded coarser grids can lead to signif-
icant computational savings for simulations of vortical flows.
3. Results

We assess our periodic–unbounded solver in conjunction with a vortex particle method on a problem of trailing vortices.
This problem has been a benchmark in several works [1,11] and involves counter-rotating vortices that undergo a medium-
wavelength instability [7]. In this setup, the secondary pair which accounts for outboard wing loading or a stabilizer, has a
span b2 ¼ 0:3b1 and a circulation C2 ¼ �0:3C1. We refer to [11] for a full description of the initial condition.

In Fig. 1, we show the evolution of the vortex structures through the instability along with the computational domain. In
this simulation, a threshold value 3:5� 10�4jxjmaxðtÞwas used. This led to a domain resizing every few tens or even hundreds
of time steps, a manageable frequency. As a result, the computational domain went from 128� 256� 128 to
128� 896� 584, efficiently tracking and adapting to the growing support of vorticity.

We illustrate the convergence of the method and the elliptic solver with Nx ¼ 64, 128 and 256 points in the periodic direc-
tion. The time histories of enstrophy � ¼

R
x � xdV in Fig. 2 indicate that the coarse mesh smears the initially sharp vortex

tubes markedly. In Fig. 3, we compare the vorticity structures at the approximate time of peak dissipation ðt ¼ 1Þ for the
three resolutions. The choice of high vorticity values emphasizes the effects of numerical dissipation. As expected, the coarse
mesh cannot capture the high vorticity in the stretched structures. Furthermore, the vortex structures which are advected
and deformed in the vicinity of the primary core trail behind those of the high resolution meshes (Nx ¼ 128 and 256).

Fig. 4 shows the evolution of the first energy modes
Fig. 2.
referen
Ekx ðtÞ ¼
ZZ

~uðkx; y; zÞ � ~u�ðkx; y; zÞdydz ð15Þ

¼
ZZ

1
2
ð~w � ~x� þ ~w� � ~xÞdydz: ð16Þ
The second identity is obtained through vector analysis and is conveniently evaluated in wave space through Parseval’s iden-
tity. The three resolutions are in excellent agreement over the linear phase of the instability; the coarsest resolution starts to
deviate from the others in the features of the mode ðkx ¼ 2Þ at the end of the linear regime ðt=t0 ¼ 0:6Þ.

If we measure the growth rate rM as
E1ðtÞ � E1ð0Þe2rM t ð17Þ
we obtain rM ’ 13:4 for t 2 ½0:15;0:67�. Our value is consistent with the value of 14.5 from the results of [11], which were
obtained with a hybrid FMM-grid solver. The slightly larger growth rate is due to the fact that the simulation of [11] is invis-
cid and rather uses a hyper-viscosity model.

The simulations presented in this section were run on the Cray XT5 at the Swiss Supercomputing Center (CSCS). The case
Nx ¼ 64 ran on 128 cores for 1.4 wallclock-hours; the case Nx ¼ 128 used 256 cores for 4.4 h; the case Nx ¼ 256 used 1024
cores for 9.4 h.
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Counter-rotating vortex pairs: evolution of the enstrophy for grid sizes Nx ¼ 64 (blue), 128 (green) and 256 (red). (For interpretation of the
ces in color in this figure legend, the reader is referred to the web version of this article.)



Fig. 3. Counter-rotating vortex pairs: isosurfaces of vorticity norm in the reconnection region and primary vortex core, from opaque red to transparent blue,
jxj ¼ 1=2;3=8;1=4jxjt¼0

max. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Counter-rotating vortices: evolution of the longitudinal energy modes for grid sizes Nx ¼ 64 (blue), 128 (green) and 256 (red). (For interpretation of
the references in color in this figure legend, the reader is referred to the web version of this article.)
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4. Conclusions

We have introduced an extension of the fast convolution technique of Hockney and Eastwood to the solution of Helm-
holtz and Poisson equations in periodic–unbounded domains. This technique can be readily adapted to any Fourier-based
solver, even parallel. When compared to the full periodic solver, the present technique incurs an overhead factor larger than
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two in three dimensions. This assumes however meshes of equal sizes; the full periodic solver will have to use a large grid to
alleviate the effect of periodic images.

We have employed this technique in conjunction with a three-dimensional vortex particle method in the study of a
benchmark vortex instability. The method was implemented within the parallel framework of the Parallel Particle Mesh li-
brary [10]; it displays convergence and agrees with results obtained with Fast Multipole Methods.

Ongoing efforts include performance comparisons with other approaches and the application to the massively parallel
simulation of vortical flows. The combination of the present unbounded Poisson solvers and the coarsening and embedded
grid techniques as introduced in [3] briefly discussed in Section 2.4 are areas of future work.
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